Intro	du	cti	on
0			

Geostatistical model (SGLMM) 00000000

Real data analysis (Applications)

Discussion 00

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

References

Spatial Generalized Linear Mixed Models with Application to Prevalence Mapping

Xiang-Yun Huang Zai-Xing Li

February 26, 2017 Department of Statistics, School of Science China University of Mining and Technology,Beijing

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	0000000	0000000	00	

Outline

- Introduction (Motivations and goals)
- 2 Literature reviews
- Geostatistical model (SGLMM)
- Occupation Computing details and simulations
- Seal data analysis (Applications)
- Oiscussion

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
•	0000000	0000000	00	

Motivations

- Radionuclide concentrations on Rongelap Island
- Ohildhood malaria in the gambia
- Solution Loa prevalence in Cameroon and surrounding areas

Goals

parameter estimation and spatial prediction as Diggle & Giorgi (2016)

thesis as Varin et al. (2005)

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	0000000	0000000	00	

Multiple prevalence surveys

Sample n_i individuals, observe Y_i positives, $i = 1, 2, \cdots, m$

 $Y_i \sim \operatorname{Bin}(n_i, p_i)$

Extra-binomial variation

Sample n_i individuals, observe Y_i positives, $i = 1, 2, \cdots, m$

 $Y_i|d_i, U_i \sim \operatorname{Bin}(n_i, p_i) \quad \log\{p_i/(1-p_i)\} = d'_i\beta + U_i \quad U_i \sim N(0, \tau^2)$

notations: Spatial Generalized Linear Mixed Models (SGLMM)

- Latent spatially correlated process
 Stationary Gaussian Process: S(x) ~ SGP{0, σ², ρ(u)}
 correlation function: e.g. ρ(u) = exp(−|u|/φ)
- Linear prediction (regression model) d(x) = covariates at location x Linear prediction: η(x) = d(x)'β + S(x) Link function: logit p(x) = log{η(x)/[1 - η(x)]}
 Conditional distribution for positive proportion Y_i/n_i

 $Y_i|S(\cdot) \sim \operatorname{Bin}(n_i, p(x_i))$ (binomial sampling)

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	0000000	0000000	00	

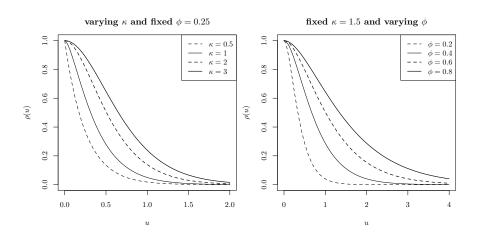
Standard geostatistical prevalence sampling model:

$$\log[p(x_i)/\{1 - p(x_i)\}] = T_i = d(x_i)'\beta + S(x_i) + U_i$$

$$E[Y_i|S(x_i), U_i] = n_i p_i$$

theoretical variograms:

$$\begin{split} V(x,x') &= \frac{1}{2} \operatorname{Var} \{ S(x) - S(x') \} \\ &= \frac{1}{2} \operatorname{Cov}(S(x) - S(x'), S(x) - S(x')) \\ &= \frac{1}{2} \{ E[S(x) - S(x')][S(x) - S(x')] - [E(S(x) - S(x'))]^2 \} \\ &= \sigma^2 - \operatorname{Cov}(S(x), S(x')) = \sigma^2 \{ 1 - \rho(u) \}, u = ||x - x'|| \\ V_T(u_{ij}) &= \frac{1}{2} \operatorname{Var} \{ T_i(x) - T_j(x) \} = \frac{1}{2} E[(T_i - T_j)^2] = \tau^2 + \sigma^2 (1 - \rho(u_{ij})) \end{split}$$


covariance matrix:

$$\operatorname{Cov}(T_i(x), T_i(x)) = \sigma^2 + \tau^2, \operatorname{Cov}(T_i(x), T_j(x)) = \sigma^2 \rho(u_{ij})$$

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	000000	0000000	00	

Matérn class of correlation functions:

$$\rho(u) = \{2^{\kappa-1} \Gamma(\kappa)\}^{-1} (u/\phi)^{\kappa} \mathcal{K}_{\kappa}(u/\phi), u > 0$$

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	0000000	0000000	00	

Profile likelihood for κ

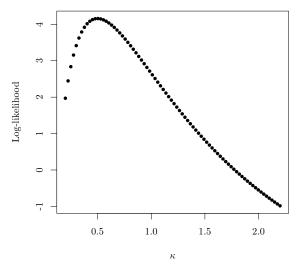


Figure 1: $\kappa = 0.4988445$,Loa loa data from Giorgi & Diggle (2016b)

・ロ・・聞・・ ほ・・ きょう

- E

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	00000000	0000000	00	

Empirical and theoretical variogram

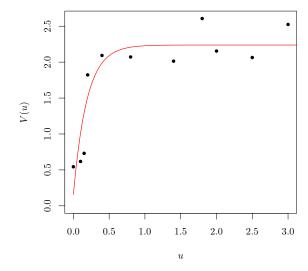


Figure 2: $\tau^2 = 0.1554, \sigma^2 = 2.0827, \phi = 0.189$ and fixed $\kappa = 0.5$

Introduction O	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion 00	References

Goals:

- estimation: the coefficient vector, 95% confidence intervals
- prediction: probability of Loa loa prevalence of unknown locations

Likelihood-based methods inferences

- Monte Carlo EM gradient used by Zhang (2002)
- Monte Carlo maximum likelihood used by Christensen (2004) and Diggle & Giorgi (2016)
- Approximate Monte Carlo EM gradient used by Hosseini (2016)

Approximate Bayesian Inference

- Bayesian approach combined with MCMC methods used by Diggle *et al.* (1998, 2002)
- Bayesian approach combined with integrated nested Laplace approximations used by Eidsvik *et al.* (2009); Rue *et al.* (2009); Gómez-Rubio & Rue (2017)

Introduction 0 Geostatistical model (SGLMM)

Real data analysis (Applications)

Discussion

References

Monte Carlo Maximum Likelihood (MCML)

let $\theta^{\top} = (\sigma^2, \phi, \tau^2)$, *D* denote the *n* by *p* matrix of covariates, $y^{\top} = (y_1, y_2, \cdots, y_n)$ and marginal distribution of *T* is $N(D\beta, \Sigma(\theta))$. The conditional distribution of $Y^{\top} = (Y_1, \cdots, Y_n)$ given $T^{\top} = t^{\top} = (t_1, t_2, \cdots, t_n)$ is

$$f(y|t) = \prod_{i=1}^n f(y_i|t_i)$$

a product of independent binomial probability functions. The likelihood function for β and θ

$$\begin{split} \mathcal{L}(\beta,\theta) &= f(y;\beta,\theta) = \int_{\mathbb{R}^n} \mathcal{N}(t;D\beta,\Sigma(\theta))f(y|t)dt \\ &= \int_{\mathbb{R}^n} \frac{\mathcal{N}(t;D\beta,\Sigma(\theta))f(y|t)}{\mathcal{N}(t;D\beta_0,\Sigma(\theta_0))f(y|t)}f(y,t)dt \\ &\propto \int_{\mathbb{R}^n} \frac{\mathcal{N}(t;D\beta,\Sigma(\theta))}{\mathcal{N}(t;D\beta_0,\Sigma(\theta_0))}f(t|y)dt = \mathcal{E}_{T|y}\left[\frac{\mathcal{N}(t;D\beta,\Sigma(\theta))}{\mathcal{N}(t;D\beta_0,\Sigma(\theta_0))}\right] \end{split}$$

Introduction 0	Geostatistical model (SGLMM) ○○○○○○○●	Real data analysis (Applications)	Discussion 00	References
Comput	ing details			

fixed β_0, θ_0 , then we get the joint distribution of Y and T

 $f(y,t) = N(t; D\beta_0, \Sigma(\theta_0))f(y|t)$

for pre-defined and use MCMC algorithm to obtain *m* samples t_i from conditional distribution of *T* given Y = y under β_0 and θ_0 , so

$$L_m(\beta,\theta) = \frac{1}{m} \sum_{i=1}^n \frac{N(t_i; D\beta, \Sigma(\theta))}{N(t_i; D\beta_0, \Sigma(\theta_0))}$$

Let $\hat{\beta}_m$ and $\hat{\theta}_m$ denote MCML estimates by maximising $L_m(\beta, \theta)$ given an suitable initial values β_0 and θ_0 , repeat the iterative procedure with $\beta_0 = \hat{\beta}_m$ and $\theta_0 = \hat{\theta}_m$ until convergence. For maximization of $L_m(\beta, \theta)$, we can choose BFGS algorithm or unconstrained optimization with PORT rountines.

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	00000000	••••••	00	
Case St	udy 1			

Loa loa prevalence data from 197 village surveys in west Africa, Diggle et al. (2007)

LONGITUDE	LATITUDE	NO_EXAM	NO_INF	ELEVATION	MAX9901
8.0419	5.7367	162	0	108	0.69
8.0043	5.6803	167	1	99	0.74
8.9056	5.3472	88	5	783	0.79
8.1007	5.9174	62	5	104	0.67
8.1825	5.1045	167	3	109	0.85
8.9292	5.3556	66	3	909	0.80
11.3600	4.8850	163	11	503	0.78
8.0675	5.8978	83	0	103	0.69

Table 1: Loa loa prevalence data (partial)

- MAX9901: Maximum of all NDVI values recorded at village location, 1999-2001.
- MEAN9901, MIN9901 and STDEV9901 are as defined above.
- NDVI: normalised-difference vegetation index

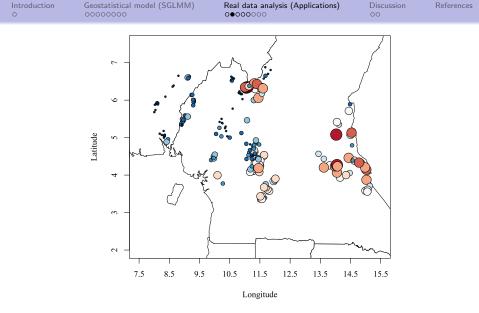
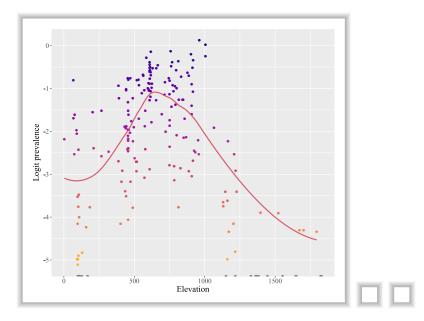


Figure 3: cex (size of circles): 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 corresponds to the observed prevalence of Loa loa: [0,0.05), [0.05,0.15), [0.15,0.25), [0.25,0.35), [0.35,0.45), [0.45,0.55) and policy intervention threshold is 0.2

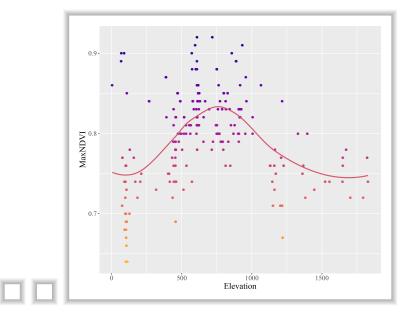
Introduction 0	Geostatistical model (SGLMM) 00000000	Real data analysis (Applications)	Discussion 00	References
Statistic	al Model			


Diggle *et al.* (2007) **Goals:**

using spatial statistical methods to address the issue of spatial correlation, and using Bayesian methods to quantify the uncertainty in the predictions from Diggle *et al.* (1998) to create a new map. village level model:

$$\log\{p(x)/[1-p(x)]\} = \alpha + f_1(\text{ELEVATION}) + f_2[\max(\text{NDVI})] + f_3[\text{s.d.}(\text{NDVI})] + S(x)$$

- S(x) Gaussian process with mean zero ,variance σ^2 and correlation function $\operatorname{Corr}(S(x), S(x')) = \exp(-||x x'||/\phi) + \tau^2/\sigma^2 \cdot I_{\{x=x'\}}$
- $f_1(\cdot), f_2(\cdot)$ and $f_3(\cdot)$ are piece-wise linear functions


Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	0000000	0000000	00	

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Image: constrained of the second of the s	

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	0000000	0000000	00	

<ロ>

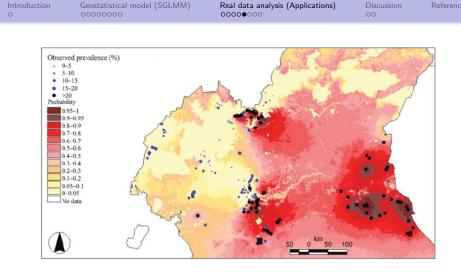


Figure 4: Predictive probability map of Loa loa prevalence in Cameroon and surrounding areas (adapted from Diggle *et al.* (2007)). Empirical prevalences at surveyed locations are indicated by size and color coded dots.

Introduction 0	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion 00	Referenc
Case St	udy 2			

Childhood malaria in the gambia, Diggle *et al.* (2002)

	×	У	pos	age	netuse	treated	green	phc
1850	349631.3	1458055	1	1783	0	0	40.85	1
1851	349631.3	1458055	0	404	1	0	40.85	1
1852	349631.3	1458055	0	452	1	0	40.85	1
1853	349631.3	1458055	1	566	1	0	40.85	1

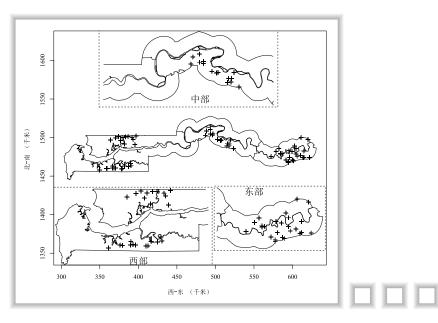
Table 2: Childhood malaria data (partial)

- pos: presence (1) or absence (0) of malaria in a blood sample taken from the child
- netuse: whether (1) or not (0) the child regularly sleeps under a bed-net.
- treated: whether (1) or not (0) the bed-net is treated (coded 0 if netuse=0).
- green: satellite-derived measure of the green-ness of vegetation in the immediate vicinity of the village (arbitrary units).
- phc: presence (1) or absence (0) of a health center in the village.

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	00000000	○○○○○●○	00	
Statistic	al Model			

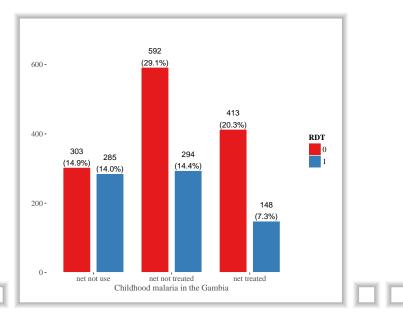
Diggle et al. (2002)

- the effects of child level covariates (age and bed net use)
- village level covariates (the primary health care and greenness of surrounding vegetation)
- separate components for residual spatial
- non-spatial extrabinomial variation


Child level model:

$$\log[p_{ij}/(1-p_{ij})] = \alpha + \beta' z_{ij} + U_i + S(x_i)$$

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)
0	0000000	0000000



References

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	0000000	0000000	00	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 0	Geostatistical model (SGLMM) 00000000	Real data analysis (Applications)	Discussion 00	References
	abe abe 0061 0021 0061 0021 0061 0021 0061 0011 0061 0011 0061 0011 0061 0011 0061 0011 0061 0011 0061 0011 0061 0011 0061 0011 0061 0011 0061 0011 0051 0011		Lange of the second of the second	
	net not use	net use not treated	treated	

ntroduction	Geostatistica 00000000	I model (S	GLMM)	Real da	ita analysis (000●	Applica	itions)	Dis	scussion	Referer
		prevalence 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	0	0	0 8 8 0 8 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0	c 3 3 0 0 0	}	0 0 0 0 0 0 0 0	0 8 0 0 0	
		0.0	30	35	40	45 greeness		50	55	60

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	00000000	0000000	•0	

- R: geoR geoRglm spatial PrevMap
 Ribeiro Jr & Diggle (2016); Christensen & Ribeiro Jr (2015);
 Ripley (2015); Giorgi & Diggle (2016a)
- Stan: Stan¹ interfaces with R (RStan), Python (PyStan), MAT-LAB (MatlabStan) and more Gelman et al. (2015); Bob et al. (2017)
- **PyMC3:** Probabilistic programming in Python using PyMC3 Salvatier *et al.* (2016)
 - JAGS: Just Another Gibbs Sampler ² Bayesian hierarchical models using Markov chain Monte Carlo (MCMC)
 - **BUGS:** Bayesian inference Using Gibbs Sampling , such as win-BUGS, OpenBUGS
- R-INLA: Integrated Nested Laplace Approximations Rue *et al.* (2009, 2016); Gómez-Rubio & Rue (2017)

¹http://mc-stan.org/

²https://en.wikipedia.org/wiki/Just_another_Gibbs_sampler (=) (=) ()

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	0000000	0000000	00	

Thanks

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	0000000	0000000	00	

- Bob, Carpenter, Andrew, Gelman, Matthew, Hoffman, & et al. 2017. Stan: A Probabilistic Programming Language. *Journal of Statistical Software*, **76**(1), 1–32.
- Christensen, Ole F. 2004. Monte Carlo Maximum Likelihood in Model-Based Geostatistics. Journal of Computational and Graphical Statistics, 13(3), 702–718.
- Christensen, Ole F., & Ribeiro Jr, Paulo J. 2015. *geoRglm: A Package for Generalised Linear Spatial Models*. R package version 0.9-8.
- Diggle, P. J., Tawn, J. A., & Moyeed, R. A. 1998. Model-based geostatistics. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(3), 299–350.
- Diggle, P. J., Thomson, M. C., Christensen, O. F., & et al. 2007. Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty. *Annals of Tropical Medicine and Parasitology*, **101**(6), 499–509.

- Diggle, Peter, Moyeed, Rana, Rowlingson, Barry, & Thomson, Madeleine. 2002. Childhood malaria in the Gambia: a case-study in model-based geostatistics. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, **51**(4), 493–506.
- Diggle, Peter J., & Giorgi, Emanuele. 2016. Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings. *Journal of the American Statistical Association*, **111**(515), 1096–1120.
- Eidsvik, J. O., Martino, Sara, & Rue, Håvard. 2009. Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models. *Scandinavian Journal of Statistics*, **36**(1), 122.
- Gelman, Andrew, Lee, Daniel, Guo, Jiqiang, & et al. 2015. Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization. *Journal of Educational and Behavioral Statistics*, **40**(5), 837–840.
- Giorgi, Emanuele, & Diggle, Peter J. 2016a. PrevMap: an R package for prevalence mapping.(In press). *Journal of Statistical Software*.

Introduction	Geostatistical model (SGLMM)	Real data analysis (Applications)	Discussion	References
0	0000000	0000000	00	

- Giorgi, Emanuele, & Diggle, Peter J. 2016b. *PrevMap: Geostatistical Modelling of Spatially Referenced Prevalence Data*. R package version 1.4.
- Gómez-Rubio, Virgilio, & Rue, Håvard. 2017. Markov Chain Monte Carlo with the Integrated Nested Laplace Approximation. *ArXiv e-prints*.
- Hosseini, Fatemeh. 2016. A new algorithm for estimating the parameters of the spatial generalized linear mixed models. *Environmental and Ecological Statistics*, **23**(2), 205–217.
- Ribeiro Jr, Paulo J., & Diggle, Peter J. 2016. *geoR: Analysis of Geostatistical Data*. R package version 1.7-5.2.
- Ripley, Brian. 2015. *spatial: Functions for Kriging and Point Pattern Analysis.* R package version 7.3-11.

Rue, Håvard, Martino, Sara, Chopin, Nicolas, & et al. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **71**(2), 319–392.

- Rue, Håvard, Martino, Sara, Lindgren, Finn, Simpson, Daniel, & et al. 2016. INLA: Functions which Allow to Perform Full Bayesian Analysis of Latent Gaussian Models using Integrated Nested Laplace Approximations. R package version 0.0-1468872408.
- Salvatier, John, Wiecki, Thomas V., & Fonnesbeck, Christopher. 2016. Probabilistic programming in Python using PyMC3. *PeerJ Computer Science*, **2**(55).
- Varin, Cristiano, Høst, Gudmund, & Skare, Øivind. 2005. Pairwise likelihood inference in spatial generalized linear mixed models. *Computational Statistics and Data Analysis*, **49**(4), 1173–1191.
- Zhang, Hao. 2002. On Estimation and Prediction for Spatial Generalized Linear Mixed Models. *Biometrics*, **58**(1), 129–36.